基于机器学习的大规模机器通信随机多址接入技术研究开题报告

 2023-09-13 08:09

1. 研究目的与意义

本课题的现状及发展趋势:

在IoT网络中,由于出现不规律且大规模的MTC请求,现如今的随机接入协议遇到随机多址接入信道阻塞的问题,对信息传输十分不利。针对这一问题,近年来,人们提出了用机器学习来改善信道拥塞状况。一些建议集中在运用强化学习来缓解状况,提高参数指标,解决大规模M2M通信拥塞问题。

本课题的价值:

本课题实现将 机器学习与随机多址接入协议相结合,实现了基于强化学习的随机多址接入算法的设计,通过MATLAB仿真了性能,并通过重新设计面向多址接入时延优化的强化学习系统,提高大规模机器通信随机接入的性能。

参考文献:

[1]N. Jiang, Y. Dengand A. Nallanathan, "Traffic Prediction and Random Access ControlOptimization: Learning and Non-Learning-Based Approaches," in IEEECommunications Magazine, vol. 59, no. 3, pp. 16-22, March 2021, doi:10.1109/MCOM.001.2000099.

[2]B. Zhao, G. Ren, X.Dong and H. Zhang, "Distributed Q-Learning Based Joint Relay Selectionand Access Control Scheme for IoT-Oriented Satellite Terrestrial RelayNetworks," in IEEE Communications Letters, vol. 25, no. 6, pp.1901-1905, June 2021, doi: 10.1109/LCOMM.2021.3061717.

[3]S. K. Sharma and X.Wang, "Toward Massive Machine Type Communications in Ultra-DenseCellular IoT Networks: Current Issues and Machine Learning-AssistedSolutions," in IEEE Communications Surveys Tutorials, vol. 22, no.1, pp. 426-471, Firstquarter 2020, doi: 10.1109/COMST.2019.2916177.

[4]D. -D. Tran, S. K.Sharma and S. Chatzinotas, "BLER-based Adaptive Q-learning for EfficientRandom Access in NOMA-based mMTC Networks," 2021 IEEE 93rd VehicularTechnology Conference (VTC2021-Spring), 2021, pp. 1-5, doi: 10.1109/VTC2021-Spring51267.2021.9448787.

[5]X. Hu and J. Sun,"Interference Analysis and Resource Allocation of Burst Scenario inMassive Machine-Type Communications," 2018 IEEE 18th InternationalConference on Communication Technology (ICCT), 2018, pp. 822-826, doi: 10.1109/ICCT.2018.8600067.

[6]C. Di, B. Zhang, Q.Liang, S. Li and Y. Guo, "Learning Automata-Based Access Class BarringScheme for Massive Random Access in Machine-to-Machine Communications,"in IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6007-6017, Aug. 2019,doi: 10.1109/JIOT.2018.2867937.

[7]J. Youn, J. Park,S. Kim, C. You and S. Cho, "A Study of Random Access for MassiveMachine-type Communications: Limitations and Solutions," 2021 IEEERegion 10 Symposium (TENSYMP), 2021, pp. 1-4, doi: 10.1109/TENSYMP52854.2021.9550999.

[8]G. J. Sutton etal., "Enabling Technologies for Ultra-Reliable and Low LatencyCommunications: From PHY and MAC Layer Perspectives," in IEEECommunications Surveys Tutorials, vol. 21, no. 3, pp. 2488-2524,thirdquarter 2019, doi: 10.1109/COMST.2019.2897800.

[9]D. -D. Tran, S. K.Sharma, S. Chatzinotas and I. Woungang, "Q-Learning-Based SCMA forEfficient Random Access in mMTC Networks With Short Packets," 2021 IEEE32nd Annual International Symposium on Personal, Indoor and Mobile RadioCommunications (PIMRC), 2021, pp. 1334-1338, doi:10.1109/PIMRC50174.2021.9569713.

[10] S. K. Sharma and X. Wang, "CollaborativeDistributed Q-Learning for RACH Congestion Minimization in Cellular IoTNetworks," in IEEE Communications Letters, vol. 23, no. 4, pp. 600-603,April 2019, doi: 10.1109/LCOMM.2019.2896929.

[11] H. R. Mazandarani and S. Khorsandi, "Preamble Reusefor Massive Machine-Type Communications in LTE Networks," ElectricalEngineering (ICEE), Iranian Conference on, 2018, pp. 1652-1657, doi:10.1109/ICEE.2018.8472433.

[12]范平志,李里,陈欢,程高峰,杨林杰,汤小波.面向大规模物联网的随机接入:现状、挑战与机遇[J].通信学报, 2021, 42(04): 1-21.

[13]李恒民,张晶,高宏旭.一种基于动态优先级的NB-IoT随机接入算法[J].南京邮电大学学报(自然科学版),2018,38(06):42-47.DOI:10.14132/j.cnki.1673-5439.2018.06.007.

[14]刘冬雪,王聪,李宁,谢威.一种提高大规模M2M通信接入成功率的分层接入方法[J].通信技术,2017,50(08):1683-1690.

2. 研究内容和问题

研究内容:

1.了解大规模机器通信(massivemachine-type communications,mmtc)的基本概念和应用场景;

2.掌握aloha协议及其原理和5g蜂窝网络随机多址接入流程;

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 设计方案和技术路线

研究方法:

首先通过阅读文献,了解大规模机器通信的基本概念及其面临的主要问题。接下来,通过复现文献中基于强化学习的随机多址接入算法,掌握强化学习的基本原理及其设计要素。最后,将分组动态到达场景和端到端时延指标纳入到随机多址接入算法的设计中,完成相应流程、奖励函数、学习算法等要素的设计,并通过matlab仿真性能。

技术路线:

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 研究的条件和基础

1.具备扎实的通信网络和移动通信基础知识;

2.了解强化学习的基本概念并具备一定的MATLAB编程能力。
剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

课题毕业论文、文献综述、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。