基于协同过滤的音乐推荐系统研究与应用开题报告

 2023-02-23 10:02

1. 研究目的与意义

互联网在如今的爆发式发展已经改变了我们的生活方式。在很大的程度上,互联网已经改变了我们的生活。互联网上资源的爆发时增长让获取有效信息成为了新的难题。用户接触到的信息非常有限。于是很多提出帮助用户快速精准找到所需信息的解决方案诞生了,例如搜索引擎,推荐系统等。

目前大型的音乐门户类网站的歌曲库规模往往包含上千万首的歌曲,这些歌曲被划 分成不同的语种、流派、年代、主题、心情、场景等,包含的信息非常的丰富,存在着 严重的信息过载。对于系统中每一位音乐用户来说,都不可能去收听曲库内的每一首歌, 很多时候用户的需求往往是“一首或几首好听的歌曲”这种模糊的需求,如何根据用户 在系统中产生的行为信息去庞大的歌曲库中挖掘出用户可能感兴趣的音乐,这就需要个 性化音乐推荐系统综合考虑用户偏好、时间、地点、环境等各种复杂的特征,准确的从 上千万的海量歌曲库中挑选出此时此刻最适合这个用户聆听的个性化音乐,给广大的用 户带来美的享受,真正做到众口可调。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 研究内容和预期目标

本次设计的主要内容是:

1)用户对音乐评分的搜集(python爬虫爬取数据)

2)hadoop大数据平台及其相关组件的搭建

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 国内外研究现状

国外研究现状:个性化推荐系统的定义是 Resnick 和 Varian 在 1997 年给出的:“它是利用电 子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销 售人员帮助客户完成购买过程”。从最初在电子商务网站的深度剖析,到当下在 的音乐、电影、学习资料等不同领域的广泛应用。在三十多年的时间里,个性化 推荐系统一直是学术界和工业界的关注的焦点。其优点在于主动性。它能自发地 收集并分析用户的行为数据,为用户的兴趣建模,得到用户的兴趣偏好后,匹配系 统中资源的特征,为用户做出有效的个性化推荐。同时,推荐引擎要一直监测系统 中的项目变化和用户在不同行为下的兴趣特征变迁,针对不同的变动,做出相应推 荐策略的调整。各平台为增加用户的黏着性,以及用户对推荐结果的准确度要求, 使得推荐系统的核心技术层出不穷,比较成熟的推荐技术有:基于内容的推荐、协同过滤(基于相似度的最邻近协同过滤算法、基于潜在因子的矩阵分解推荐算法)、深度学习、基于标签的推荐系统、混合推荐算法等。

国内研究现状:国内的音乐推荐技术发展相对缓慢。大多数音乐网站采用的技术不够成熟,基本上是针对所有 用户,个性化成分太少。不过,经过一段时间的发展,国内也涌现出了一些优秀的音乐推荐网站,比如 SongTaste、虾米网和豆瓣网等。SongTaste 是一个社 交性质的音乐网站。在它的社区中,每一个用户都可 以看到大家最近在收听什么音乐、有什么新的音乐推 荐。它的音乐分类相当齐全,而且推荐排行实时更 新。另外,根据用户平时推荐的歌曲、听歌行为以及 歌曲收录信息,还能够找到“相似的品味者”,从而更 好地做出推荐。豆瓣网也是一个社交性的音乐推荐 网站。它主要通过豆瓣小组、新浪微博、MSN、开心 网、人人网等互动平台来分享和传播用户喜欢的音乐。虾米网在注册成为网站会员时会让用户选择至 少 5 位艺人进行收藏,以此来初步确定用户欣赏音乐 的倾向。另外,用户还可以从大家的推荐中搜索自己 喜爱的音乐,或者从品味相似的好友中找到适合自己 的音乐。

4. 计划与进度安排

互联网发展到如今已经完完全全的改变了的生活方式,融入了日常生活,包括交流,出行,消费,娱乐等。与此同时,音乐数据也在与日俱增的变化着。用户在访问一个音乐网站时,如何能快速的找到自己想要享受的歌曲呢?个性化音乐推荐系统可以做到。

课题做了个性化推荐系统,后端使用个性化推荐算法构造,前端使用spring ssm框架搭建了个性化音乐推荐系统。系统数据库使用了关系型数据库mysql和大数据数据库。前端收集过用户行为数据后传到后端使用基于用户的协同过滤算法来推荐出用户可能喜欢的音乐。设计主要完成了从网易云音乐门户网站上爬取数据(音乐信息,歌手信息等),并在获取数据后对数据进行清洗过滤等操作后保证了数据的有效性,将爬取到的六千多条数据保存到数据库后,采用基于用户的协同过滤算法推荐用户可能喜欢的音乐。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

5. 参考文献

【1】yuan xie,lei ding.a survey of music personalized recommendation syste[j].international conference on network, communication, computer engineering (ncce),2018,147:852-857.

【2】艾笔.个性化音乐推荐系统的设计与实现[d].成都:电子科技大学,2018年6月.

【3】邓腾飞.个性化音乐推荐系统的研究[d].广州:华南理工大学,2018年4月.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

课题毕业论文、文献综述、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。